3.4.64 \(\int \frac {(a+a \sec (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx\) [364]

3.4.64.1 Optimal result
3.4.64.2 Mathematica [C] (verified)
3.4.64.3 Rubi [A] (verified)
3.4.64.4 Maple [B] (verified)
3.4.64.5 Fricas [C] (verification not implemented)
3.4.64.6 Sympy [F]
3.4.64.7 Maxima [F]
3.4.64.8 Giac [F]
3.4.64.9 Mupad [B] (verification not implemented)

3.4.64.1 Optimal result

Integrand size = 23, antiderivative size = 91 \[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx=-\frac {4 a^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a^2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

output
-4*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d 
*x+1/2*c),2^(1/2))/d+8/3*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2* 
c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a^2*sin(d*x+c)/d/cos(d*x+c) 
^(3/2)+4*a^2*sin(d*x+c)/d/cos(d*x+c)^(1/2)
 
3.4.64.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.37 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.22 \[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 a^2 \csc (c+d x) \left (\operatorname {Hypergeometric2F1}\left (-\frac {3}{4},\frac {1}{2},\frac {1}{4},\cos ^2(c+d x)\right )+6 \cos (c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},\cos ^2(c+d x)\right )-3 \cos ^2(c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\cos ^2(c+d x)\right )\right ) \sqrt {\sin ^2(c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

input
Integrate[(a + a*Sec[c + d*x])^2/Sqrt[Cos[c + d*x]],x]
 
output
(2*a^2*Csc[c + d*x]*(Hypergeometric2F1[-3/4, 1/2, 1/4, Cos[c + d*x]^2] + 6 
*Cos[c + d*x]*Hypergeometric2F1[-1/4, 1/2, 3/4, Cos[c + d*x]^2] - 3*Cos[c 
+ d*x]^2*Hypergeometric2F1[1/4, 1/2, 5/4, Cos[c + d*x]^2])*Sqrt[Sin[c + d* 
x]^2])/(3*d*Cos[c + d*x]^(3/2))
 
3.4.64.3 Rubi [A] (verified)

Time = 0.91 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.67, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.652, Rules used = {3042, 4752, 3042, 4275, 3042, 4255, 3042, 4258, 3042, 3119, 4534, 3042, 4258, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^2}{\sqrt {\cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sec (c+d x)} (\sec (c+d x) a+a)^2dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2dx\)

\(\Big \downarrow \) 4275

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (2 a^2 \int \sec ^{\frac {3}{2}}(c+d x)dx+\int \sqrt {\sec (c+d x)} \left (\sec ^2(c+d x) a^2+a^2\right )dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (2 a^2 \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx+\int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2\right )dx\right )\)

\(\Big \downarrow \) 4255

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2\right )dx+2 a^2 \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\sec (c+d x)}}dx\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2\right )dx+2 a^2 \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2\right )dx+2 a^2 \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2\right )dx+2 a^2 \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2\right )dx+2 a^2 \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )\)

\(\Big \downarrow \) 4534

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {4}{3} a^2 \int \sqrt {\sec (c+d x)}dx+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+2 a^2 \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {4}{3} a^2 \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+2 a^2 \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {4}{3} a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+2 a^2 \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {4}{3} a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+2 a^2 \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {8 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+2 a^2 \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )\)

input
Int[(a + a*Sec[c + d*x])^2/Sqrt[Cos[c + d*x]],x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((8*a^2*Sqrt[Cos[c + d*x]]*EllipticF 
[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^2*Sec[c + d*x]^(3/2)*Sin 
[c + d*x])/(3*d) + 2*a^2*((-2*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] 
*Sqrt[Sec[c + d*x]])/d + (2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d))
 

3.4.64.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4275
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^2, x_Symbol] :> Simp[2*a*(b/d)   Int[(d*Csc[e + f*x])^(n + 1), x], x] 
 + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, 
 e, f, n}, x]
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.4.64.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(370\) vs. \(2(135)=270\).

Time = 8.50 (sec) , antiderivative size = 371, normalized size of antiderivative = 4.08

method result size
default \(-\frac {4 \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{2} \left (12 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-4 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-6 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-7 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(371\)

input
int((a+a*sec(d*x+c))^2/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
-4/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2/(4*sin( 
1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)^2+1)/sin(1/2*d*x+1/2*c)^3*(12*sin(1/ 
2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/ 
2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+ 
1/2*c)^2-6*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/ 
2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2-7*cos(1/2*d*x+1/ 
2*c)*sin(1/2*d*x+1/2*c)^2+2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/ 
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*(sin(1/2*d*x+1/2*c 
)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1 
)^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d 
*x+1/2*c)^2-1)^(1/2)/d
 
3.4.64.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 187, normalized size of antiderivative = 2.05 \[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx=-\frac {2 \, {\left (2 i \, \sqrt {2} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 2 i \, \sqrt {2} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (6 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{3 \, d \cos \left (d x + c\right )^{2}} \]

input
integrate((a+a*sec(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="fricas")
 
output
-2/3*(2*I*sqrt(2)*a^2*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + 
c) + I*sin(d*x + c)) - 2*I*sqrt(2)*a^2*cos(d*x + c)^2*weierstrassPInverse( 
-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)*a^2*cos(d*x + c)^2*wei 
erstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + 
c))) - 3*I*sqrt(2)*a^2*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPI 
nverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (6*a^2*cos(d*x + c) + a^2) 
*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2)
 
3.4.64.6 Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx=a^{2} \left (\int \frac {2 \sec {\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {\sec ^{2}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {1}{\sqrt {\cos {\left (c + d x \right )}}}\, dx\right ) \]

input
integrate((a+a*sec(d*x+c))**2/cos(d*x+c)**(1/2),x)
 
output
a**2*(Integral(2*sec(c + d*x)/sqrt(cos(c + d*x)), x) + Integral(sec(c + d* 
x)**2/sqrt(cos(c + d*x)), x) + Integral(1/sqrt(cos(c + d*x)), x))
 
3.4.64.7 Maxima [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="maxima")
 
output
integrate((a*sec(d*x + c) + a)^2/sqrt(cos(d*x + c)), x)
 
3.4.64.8 Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^2/cos(d*x+c)^(1/2),x, algorithm="giac")
 
output
integrate((a*sec(d*x + c) + a)^2/sqrt(cos(d*x + c)), x)
 
3.4.64.9 Mupad [B] (verification not implemented)

Time = 14.35 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.20 \[ \int \frac {(a+a \sec (c+d x))^2}{\sqrt {\cos (c+d x)}} \, dx=\frac {2\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int((a + a/cos(c + d*x))^2/cos(c + d*x)^(1/2),x)
 
output
(2*a^2*ellipticF(c/2 + (d*x)/2, 2))/d + (4*a^2*sin(c + d*x)*hypergeom([-1/ 
4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2 
)) + (2*a^2*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d 
*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2))